

Graphs and Coloring

Junaid

Lecture 7: Discrete Mathematical Modelling

What is a Graph?

- ▶ A graph consists of two sets V and E where

What is a Graph?

- ▶ A graph consists of two sets V and E where
- ▶

$$V = \{v_1, \dots, v_n\}$$

What is a Graph?

- ▶ A graph consists of two sets V and E where

$$V = \{v_1, \dots, v_n\}$$

- ▶

$$E = \{e_1, \dots, e_m\}$$

What is a Graph?

- ▶ A graph consists of two sets V and E where
- ▶
$$V = \{v_1, \dots, v_n\}$$
- ▶
$$E = \{e_1, \dots, e_m\}$$
- ▶ where each edge e_i consists of an **unordered** vertex pair $e_i = \{v_j, v_k\}$.

What is a Graph?

- ▶ A graph consists of two sets V and E where
- ▶
$$V = \{v_1, \dots, v_n\}$$
- ▶
$$E = \{e_1, \dots, e_m\}$$
- ▶ where each edge e_i consists of an **unordered** vertex pair $e_i = \{v_j, v_k\}$.
- ▶ $j \neq k$ because we avoid self loops.

What is a Graph?

- ▶ A graph consists of two sets V and E where
 - ▶
$$V = \{v_1, \dots, v_n\}$$
 - ▶
$$E = \{e_1, \dots, e_m\}$$
- ▶ where each edge e_i consists of an **unordered** vertex pair $e_i = \{v_j, v_k\}$.
- ▶ $j \neq k$ because we avoid self loops.
- ▶ For a *directed* graph we consider edges as ordered pairs.

Example

- ▶ Let $V = \{1, 2, 3, 4, 5\}$ and

Example

- ▶ Let $V = \{1, 2, 3, 4, 5\}$ and
- ▶ $E = \{(1, 2), (1, 3), (2, 3), (2, 4)\}$.

Example

- ▶ Let $V = \{1, 2, 3, 4, 5\}$ and
- ▶ $E = \{(1, 2), (1, 3), (2, 3), (2, 4)\}$.
- ▶ For an unordered graph, the order of the vertices in each edge does not matter.

Example

- ▶ Let $V = \{1, 2, 3, 4, 5\}$ and
- ▶ $E = \{(1, 2), (1, 3), (2, 3), (2, 4)\}$.
- ▶ For an unordered graph, the order of the vertices in each edge does not matter.
- ▶ $G = \{V, E\}$ is a graph.