
Multiple Knapsacks and Logic

Junaid Hasan

Lecture 6 Discrete Math Modelling



Multiple Knapsacks

I Last Friday we talked about the Knapsack problem.
I Let us consider an extension to the Knapsack Problem:
I We start with a collection of items with varying weights and

values.
I However, now we can pack them in N equal knapsacks (say 5

knapsacks).
I Again, we want to pack so that the total volume is maximum.



Contd..

I Suppose we have 5 knapsacks(bins) each of maximum allowed
weight 100.

I The weights are weights = {48, 30, 42, 36, 36, 48,
42, 42, 36, 24, 30, 30, 42, 36, 36}

I The values are values = {10, 30, 25, 50, 35, 30, 15,
40, 30, 35, 45, 10, 20, 30, 25}

I How to pack?



Model: Multiple Knapsack

I Let us consider data[i,j] as a binary variable which is 1
when item i is packed in bin j.

I Constraints:
I Each item goes in exactly one bin for each i∑

j
data[i , j] ≤ 1

I Bin capacity for each bin j∑
i

data[i , j] · weights[i ] ≤ 100

I Maximize value ∑
i

data[i , j] · values[i ]



Bin Packing

I Let us ask a new question.
I Suppose we have an infinite number of knapsacks(bins) of a

common size say 100.
I However we want to pack all items with the fewest number of

bins.
I An application of this problem is when a logistics agent wants

to pack items in boxes of a fixed size and wants to use the
fewest number of boxes.

I Note that the value of the items is irrelevant now.



Model
I x[i,j] is a binary variable which records if object i is placed in

bin j.
I y[j] is a binary variable which records if bin j is used.
I Contraints:
I Each item is packed in exactly one bin, for all i∑

j
x [i , j] = 1

I Bin capacity for each j∑
i

x [i , j] · weights[i ] ≤ 100 · y [j]

I The multiplication by y[j] makes sure that the capcity is 0 if
not used.

I Minimize ∑
j

y [j]

.



LPs and Logic

I Let us change course and discuss how to put logical constraints
in LPs.

I Suppose we have two binary variables and we require that x1 or
x2 is 1. How?

I We can do this by
x1 + x2 ≥ 1.

I If we want exclusive or, then?

I
x1 + x2 = 1



More logical operations

I If we want x1 to imply x2
I If x1 = 1, then x2 = 1, how to enforce this with linear

constraints?
I Answer:

x2 ≥ x1.



AND operator

I If we want b = 1 if x1 = 1 and x2 = 1, and b = 0 otherwise.
Then?

I
b ≥ x1 + x2 − 1
b ≤ x1

b ≤ x2

b ∈ {0, 1}
I When both are 1, the first condition forces b to be 1 and
I When either is 0, it forces b to be less than them making b

equal to 0.



OR Operator

I If we want b = 1 if x1 = 1 or x2 = 1, then
I

b ≤ x1 + x2

b ≥ x1

b ≥ x2

b ∈ {0, 1}
I When both are 0, the first statement makes b 0 as well and
I When either is 1, then the greater than equal makes b equal to

1 as well.



XOR Operator

I If we want b = 1 if x1 = 1 xor x2 = 1. This means that b
must be 0 when both are 1, and b is 1 only when exactly on of
x1, x2 is 1.

I
b ≤ x1 + x2

b ≥ x1 − x2

b ≥ x2 − x1

b ≤ 2− x1 − x2

I The first condition ensures b is 0, when both are 0.
I The last condition ensures b is 0 when both are 1.
I The remaining two ensure b is 1, when exactly one of them is 1.



More complex contructions

I If we want either 2x1 + x2 ≥ 5 or 2x3 − x4 ≤ 2 or both.
I Then how to do?
I We add a binary variable y and
I a large value M. How large M is depends on the largest

possible value taken by 2x3 − x4 and 2x1 + x2.
I We make M larger than the largest these can take so that they

are always less than M.
I

2x1 + x2 ≥ 5−M · y
2x3 − x4 ≤ 2 + M · (1− y)



contd..

I
2x1 + x2 ≥ 5−M · y
2x3 − x4 ≤ 2 + M · (1− y)

I If y = 0 then this means we only check if 2x1 + x2 ≥ 5 because
the second is always true.

I If y = 1, then we only check the second condition as the first is
always true.



Indicator variable

I Suppose x is an integer variable (say x ≥ 0).
I We want a binary variable y such that if $ x >0$ then y = 1,

else y = 0.
I Again we choose a postive M such that x < M always holds

then
I

x ≤ M · y
y ≤ M · x

I Why?


