

Multiple Knapsacks and Logic

Junaid Hasan

Lecture 6 Discrete Math Modelling

Multiple Knapsacks

- ▶ Last Friday we talked about the Knapsack problem.
- ▶ Let us consider an extension to the Knapsack Problem:
- ▶ We start with a collection of items with varying weights and values.
- ▶ However, now we can pack them in N equal knapsacks (say 5 knapsacks).
- ▶ Again, we want to pack so that the total volume is maximum.

Contd..

- ▶ Suppose we have 5 knapsacks(bins) each of maximum allowed weight 100.
- ▶ The weights are $\text{weights} = \{48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36\}$
- ▶ The values are $\text{values} = \{10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25\}$
- ▶ How to pack?

Model: Multiple Knapsack

- ▶ Let us consider $data[i, j]$ as a binary variable which is 1 when item i is packed in bin j .
- ▶ Constraints:
- ▶ Each item goes in exactly one bin for each i

$$\sum_j data[i, j] \leq 1$$

- ▶ Bin capacity for each bin j

$$\sum_i data[i, j] \cdot weights[i] \leq 100$$

- ▶ Maximize value

$$\sum_i data[i, j] \cdot values[i]$$

Bin Packing

- ▶ Let us ask a new question.
- ▶ Suppose we have an infinite number of knapsacks(bins) of a common size say 100.
- ▶ However we want to pack all items with the fewest number of bins.
- ▶ An application of this problem is when a logistics agent wants to pack items in boxes of a fixed size and wants to use the fewest number of boxes.
- ▶ Note that the value of the items is irrelevant now.

Model

- ▶ $x[i, j]$ is a binary variable which records if object i is placed in bin j .
- ▶ $y[j]$ is a binary variable which records if bin j is used.
- ▶ Constraints:
- ▶ Each item is packed in exactly one bin, for all i

$$\sum_j x[i, j] = 1$$

- ▶ Bin capacity for each j

$$\sum_i x[i, j] \cdot \text{weights}[i] \leq 100 \cdot y[j]$$

- ▶ The multiplication by $y[j]$ makes sure that the capacity is 0 if not used.
- ▶ Minimize

$$\sum_j y[j]$$

LPs and Logic

- ▶ Let us change course and discuss how to put logical constraints in LPs.
- ▶ Suppose we have two binary variables and we require that x_1 or x_2 is 1. How?
- ▶ We can do this by

$$x_1 + x_2 \geq 1.$$

- ▶ If we want exclusive or, then?

$$x_1 + x_2 = 1$$

More logical operations

- ▶ If we want x_1 to imply x_2
- ▶ If $x_1 = 1$, then $x_2 = 1$, how to enforce this with linear constraints?
- ▶ Answer:

$$x_2 \geq x_1.$$

AND operator

- ▶ If we want $b = 1$ if $x_1 = 1$ **and** $x_2 = 1$, and $b = 0$ otherwise.
Then?
- ▶

$$b \geq x_1 + x_2 - 1$$

$$b \leq x_1$$

$$b \leq x_2$$

$$b \in \{0, 1\}$$

- ▶ When both are 1, the first condition forces b to be 1 and
- ▶ When either is 0, it forces b to be less than them making b equal to 0.

OR Operator

- ▶ If we want $b = 1$ if $x_1 = 1$ **or** $x_2 = 1$, then
- ▶

$$b \leq x_1 + x_2$$

$$b \geq x_1$$

$$b \geq x_2$$

$$b \in \{0, 1\}$$

- ▶ When both are 0, the first statement makes b 0 as well and
- ▶ When either is 1, then the greater than equal makes b equal to 1 as well.

XOR Operator

- ▶ If we want $b = 1$ if $x_1 = 1$ **xor** $x_2 = 1$. This means that b must be 0 when both are 1, and b is 1 only when exactly one of x_1, x_2 is 1.

$$b \leq x_1 + x_2$$

$$b \geq x_1 - x_2$$

$$b \geq x_2 - x_1$$

$$b \leq 2 - x_1 - x_2$$

- ▶ The first condition ensures b is 0, when both are 0.
- ▶ The last condition ensures b is 0 when both are 1.
- ▶ The remaining two ensure b is 1, when exactly one of them is 1.

More complex contructions

- ▶ If we want either $2x_1 + x_2 \geq 5$ or $2x_3 - x_4 \leq 2$ or both.
- ▶ Then how to do?
- ▶ We add a binary variable y and
- ▶ a large value M . How large M is depends on the largest possible value taken by $2x_3 - x_4$ and $2x_1 + x_2$.
- ▶ We make M larger than the largest these can take so that they are always less than M .
- ▶

$$2x_1 + x_2 \geq 5 - M \cdot y$$

$$2x_3 - x_4 \leq 2 + M \cdot (1 - y)$$

contd..

$$2x_1 + x_2 \geq 5 - M \cdot y$$

$$2x_3 - x_4 \leq 2 + M \cdot (1 - y)$$

- ▶ If $y = 0$ then this means we only check if $2x_1 + x_2 \geq 5$ because the second is always true.
- ▶ If $y = 1$, then we only check the second condition as the first is always true.

Indicator variable

- ▶ Suppose x is an integer variable (say $x \geq 0$).
- ▶ We want a binary variable y such that if $x > 0$ then $y = 1$, else $y = 0$.
- ▶ Again we choose a positive M such that $x < M$ always holds then
- ▶
$$x \leq M \cdot y$$
$$y \leq M \cdot x$$
- ▶ Why?