Multiple Knapsacks and Logic

Junaid Hasan

Lecture 6 Discrete Math Modelling



Multiple Knapsacks

v

Last Friday we talked about the Knapsack problem.

Let us consider an extension to the Knapsack Problem:

We start with a collection of items with varying weights and
values.

However, now we can pack them in N equal knapsacks (say 5
knapsacks).

Again, we want to pack so that the total volume is maximum.



Contd..

» Suppose we have 5 knapsacks(bins) each of maximum allowed
weight 100.

> The weights are weights = {48, 30, 42, 36, 36, 48,
42, 42, 36, 24, 30, 30, 42, 36, 36}

» The values are values = {10, 30, 25, 50, 35, 30, 15,
40, 30, 35, 45, 10, 20, 30, 25}

» How to pack?



Model: Multiple Knapsack

P Let us consider datali, j] as a binary variable which is 1
when item i is packed in bin j.

» Constraints:

» Each item goes in exactly one bin for each i

Z data[i,j] <1
J

» Bin capacity for each bin j

> datali, j] - weights]i] < 100

» Maximize value

Z data[i, j] - values[i]



Bin Packing

P Let us ask a new question.

» Suppose we have an infinite number of knapsacks(bins) of a
common size say 100.

» However we want to pack all items with the fewest number of
bins.

» An application of this problem is when a logistics agent wants
to pack items in boxes of a fixed size and wants to use the
fewest number of boxes.

> Note that the value of the items is irrelevant now.



Model

» x[i,j] is a binary variable which records if object i is placed in
bin j.

» y[j] is a binary variable which records if bin j is used.

Contraints:

» Each item is packed in exactly one bin, for all i

ZX[i,j] =1

J

v

» Bin capacity for each j

> " x[i,j] - weights[i] < 100 - y[j]

]

» The multiplication by y[j] makes sure that the capcity is 0 if
not used.
> Minimize

>yl



LPs and Logic

P Let us change course and discuss how to put logical constraints
in LPs.

» Suppose we have two binary variables and we require that x; or
xp is 1. How?

> We can do this by
x1+x > 1.

» If we want exclusive or, then?

x1+x=1



More logical operations

> If we want x3 to imply x,
> If x; = 1, then x, = 1, how to enforce this with linear
constraints?

» Answer:
X2 Z X1.



AND operator

> If wewant b=1if xy =1 and x, =1, and b = 0 otherwise.
Then?
>
b>x1+x—1
b S X1
b S X2
b e {0,1}
» When both are 1, the first condition forces b to be 1 and

» When either is 0, it forces b to be less than them making b
equal to 0.



OR Operator

> Ifwewant b=1if xy =1 o0or x =1, then
| 2
b<x1+x

b>x
b>x
b e {0,1}
» When both are 0, the first statement makes b 0 as well and

» When either is 1, then the greater than equal makes b equal to
1 as well.



XOR Operator

» If we want b=1if x; =1 xor x, = 1. This means that b
must be 0 when both are 1, and b is 1 only when exactly on of

X1, X2 is 1.
>
b<xi+x
bZXl—Xz
b>x—x1

b<2—x1—x

» The first condition ensures b is 0, when both are 0.
The last condition ensures b is 0 when both are 1.
» The remaining two ensure b is 1, when exactly one of them is 1.

v



More complex contructions

vvyyvyy

If we want either 2x; + xo > 5 or 2x3 — x4 < 2 or both.

Then how to do?

We add a binary variable y and

a large value M. How large M is depends on the largest
possible value taken by 2x3 — x4 and 2x3 + xo.

We make M larger than the largest these can take so that they
are always less than M.

2x1+x0 >5—M-y
2x3—x4 <2+ M-(1—-y)



contd..

2x1+x0 >5—-M-y
2x3—x4 <24+ M-(1—-y)

» If y = 0 then this means we only check if 2x; + xo > 5 because

the second is always true.
> If y =1, then we only check the second condition as the first is

always true.



Indicator variable

» Suppose x is an integer variable (say x > 0).
» We want a binary variable y such that if $ x >0% then y =1,

else y = 0.
> Again we choose a postive M such that x < M always holds
then
>
x< M-y
y<M-x

> Why?



