
Introduction to Linear Programming

Junaid Hasan

Math 381 Lecture 2



A sample problem

I Jack wants to buy oranges and apples.

I Suppose apples are priced at 3 dollars a pound and oranges at
4 dollars a pound.

I Each pound of apples has 70 grams of protein while each
pound of orange has 50 grams of protein.

I A pound of apples has 50 grams of fiber while a pound of
oranges has 80 grams of fiber.

I He wants to have at least 100 grams of fiber and at least 50
grams of protein.

I How much apples and oranges should he buy to minimize cost.



The Mathematical Model

I Suppose Jack buys x pounds of apples and y pounds of
oranges.

I He wants to minimize 3x + 4y .
I However he must ensure that 70x + 50y ≥ 50 (protein

requirement) and
I that 50x + 80y ≥ 60 for the fiber requirement.



Discussion

I What do you notice here?



Solution by hand

I Lets plot something



(continued)..



My Plot

Figure 1: graph



(contd..)

Figure 2: graph



Solution by code

I First we import the Model class from pyscipopt via from
pyscipopt import Model

I Next Let us create a new object from the Model class and give
it a name model = Model("Apple and Oranges")

I In the Model class we can add variables and constraints. Lets
add the two variables

I x = model.addVar(vtype="C", name="x")
I y = model.addVar(vtype="C", name="x")
I Here the vtype="C" tells the program that the variables are

continuous variables. If we had force the variables to be
integers then we would use vtype="I"

I Lets add the constraints model.addCons(70*x + 50*y
>=50, "protein requirement")

I model.addCons(50*x + 80*y >=60, "fiber
requirement")



contd..

I Remark on addVar(). Its complete signature is
I addVar(name="", vtype="C", lb=0.0, ub=None,

obj=0.0, pricedVar = False)
I Note the default values for names, vtype, lb, ub
I This means we could have called the function as x =

model.addVar("x")
I Let us finally define the objective function

model.setObjective(3*x + 4*y, "minimize")
I Solve by model.optimize()



Continued

I Input

from pyscipopt import Model
model = Model("Apple and Oranges")

x = model.addVar(vtype="C", name="x")
y = model.addVar(vtype="C", name="x")

model.addCons(70*x + 50*y >=50, "protein requirement")
model.addCons(50*x + 80*y >=60, "fiber requirement")

model.setObjective(3*x + 4*y, "minimize")

model.optimize()



contd..

if model.getStatus() == "optimal":
print("Optimal value:", model.getObjVal())
print("Solution:")
print(" x = ", model.getVal(x))
print(" y = ", model.getVal(y))

else:
print("Problem could not be solved to optimaly")

I Output

Optimal value: 3.161290322580645
Solution:

x = 0.3225806451612903
y = 0.5483870967741935



Takeaways

I The problem has a linear (objective function) max/min
objective.

I The constraints are linear as well.
I Implicit non-negativity constraints.
I Sometimes could be integer constraints (Integer LP).
I This kind of problem is known as a Linear Programming

Problem.
I If you are interested in the history check out Wikipedia.

https://en.wikipedia.org/wiki/Linear_programming#History


Standard Terminology

I A problem of the form

maximize/minimize c1x1 + c2x2 · · ·+ cnxn

subject to a1,1x1 + · · ·+ a1,nxn ≤ (or) ≥ b1

a2,1x1 + · · ·+ a2,nxn ≤ (or) ≥ b2
...
am,1x1 + · · ·+ am,nxn ≤ (or) ≥ bm

x1, x2, . . . , xn ≥ 0

I is called a standard linear programming problem.



Another Example: Transportation Problem
I A sports equipment company XYZ has products manufactured

at three factories(j =1,2,3) and delivered to five stores(i =
1,2,3,4,5). What to do to minimize cost.

I Lets us draw the scenario



Transportation Problem contd.

I As a table it is given by



Problem Formulation

I Let xij be the amount of goods transported from factory j to
customer i.

I Then can you write the optimization problem.



Answer:

I
minimize

∑
i∈I

∑
j∈J

cijxij

subject to demand
∑
j∈J

xij = di ∀i ∈ I

and factory capacity
∑
i∈I

xij ≤ Mj ∀j ∈ J

xij ≥ 0 ∀i ∈ I, j ∈ J



Solution via code

I We will use a special datatype in Python to our advantage. It
is a dictionary(or arrays would work fine as well). It allows to
specify the keys and the values at the keys {key1:value1,
key2:value2, ...}

I For demand demand = {1:80, 2:270, 3:250, 4:160,
5:180}

I For capacity capacity = {1:500, 2:500, 3:500}
I List(arrays in Python are called lists) of customers I =

[1,2,3,4,5]
I Factories J = [1,2,3]
I Shipping cost would be a 2D array. We use dictionaries as cost

= {(1,1):4, (1,2):6, (1,3):9 (2,1):5, (2,2):4,
(2,3):7, (3,1):6, (3,2):3, (3,3):3, (4,1):8,
(4,2):5, (4,3):3, (5,1):10, (5,2):8, (5,3):4, }



The full code and solution

(Refer to the python notebook attached in Canvas>Files)

I Output

Optimal value: 3350.0
sending quantity 80.0 from factory 1 to customer 1
sending quantity 270.0 from factory 2 to customer 2
sending quantity 230.0 from factory 2 to customer 3
sending quantity 20.0 from factory 3 to customer 3
sending quantity 160.0 from factory 3 to customer 4
sending quantity 180.0 from factory 3 to customer 5



Summary

I We saw problems that are known are linear programs.
I We say two examples.
I Some drawbacks of LPs
I The constraints and objective functions are linear. In nature we

often have factors that are not linear say $ 5xˆ2 + yˆ2 $ or $
log(5x) + 4y $

I These do not work well in LPs.
I However the advantage of LPs is that they are simple to state

and solve.
I Next class we will talk more about LPs and Integer LPs.


