

Introduction to Linear Programming

Junaid Hasan

Math 381 Lecture 2

A sample problem

- ▶ Jack wants to buy oranges and apples.
- ▶ Suppose apples are priced at 3 dollars a pound and oranges at 4 dollars a pound.
- ▶ Each pound of apples has 70 grams of protein while each pound of orange has 50 grams of protein.
- ▶ A pound of apples has 50 grams of fiber while a pound of oranges has 80 grams of fiber.
- ▶ He wants to have at least 100 grams of fiber and at least 50 grams of protein.
- ▶ How much apples and oranges should he buy to minimize cost.

The Mathematical Model

- ▶ Suppose Jack buys x pounds of apples and y pounds of oranges.
- ▶ He wants to minimize $3x + 4y$.
- ▶ However he must ensure that $70x + 50y \geq 50$ (protein requirement) and
- ▶ that $50x + 80y \geq 60$ for the fiber requirement.

Discussion

- ▶ What do you notice here?

Solution by hand

- ▶ Lets plot something

(continued)..

My Plot

10:27 AM Wed Jun 23

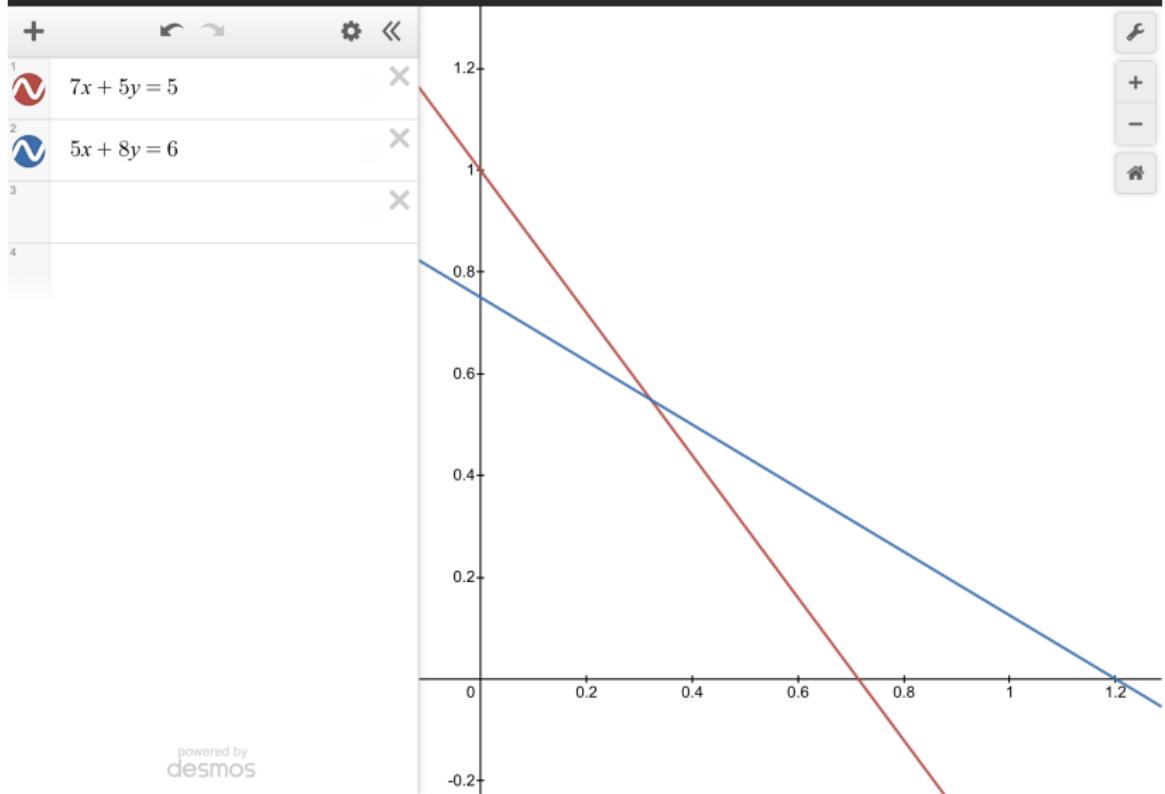
Untitled Graph

desmos

Log In

or Sign Up

84%



powered by
desmos

Figure 1: graph

(contd..)

10:30 AM Wed Jun 23

Untitled Graph

desmos

Log In

Sign Up

1	$7x + 5y = 5$	X
2	$5x + 8y = 6$	X
3	$3x + 4y = c$	X
4	$c = 3.15$	X
5		

powered by
desmos

Figure 2: graph

Solution by code

- ▶ First we import the Model class from pycipopt via `from pycipopt import Model`
- ▶ Next Let us create a new object from the Model class and give it a name `model = Model("Apple and Oranges")`
- ▶ In the Model class we can add variables and constraints. Lets add the two variables
- ▶ `x = model.addVar(vtype="C", name="x")`
- ▶ `y = model.addVar(vtype="C", name="x")`
- ▶ Here the `vtype="C"` tells the program that the variables are continuous variables. If we had force the variables to be integers then we would use `vtype="I"`
- ▶ Lets add the constraints `model.addCons(70*x + 50*y >=50, "protein requirement")`
- ▶ `model.addCons(50*x + 80*y >=60, "fiber requirement")`

contd..

- ▶ Remark on `addVar()`. Its complete signature is
- ▶ `addVar(name="", vtype="C", lb=0.0, ub=None, obj=0.0, pricedVar = False)`
- ▶ Note the default values for names, vtype, lb, ub
- ▶ This means we could have called the function as `x = model.addVar("x")`
- ▶ Let us finally define the objective function
`model.setObjective(3*x + 4*y, "minimize")`
- ▶ Solve by `model.optimize()`

Continued

► Input

```
from pypsicpopt import Model
model = Model("Apple and Oranges")

x = model.addVar(vtype="C", name="x")
y = model.addVar(vtype="C", name="y")

model.addCons(70*x + 50*y >=50, "protein requirement")
model.addCons(50*x + 80*y >=60, "fiber requirement")

model.setObjective(3*x + 4*y, "minimize")

model.optimize()
```

contd..

```
if model.getStatus() == "optimal":  
    print("Optimal value:", model.getObjVal())  
    print("Solution:")  
    print("  x = ", model.getVal(x))  
    print("  y = ", model.getVal(y))  
else:  
    print("Problem could not be solved to optimally")
```

► Output

Optimal value: 3.161290322580645

Solution:

x = 0.3225806451612903

y = 0.5483870967741935

Takeaways

- ▶ The problem has a linear (objective function) max/min objective.
- ▶ The constraints are linear as well.
- ▶ Implicit non-negativity constraints.
- ▶ Sometimes could be integer constraints (Integer LP).
- ▶ This kind of problem is known as a Linear Programming Problem.
- ▶ If you are interested in the history check out Wikipedia.

Standard Terminology

- ▶ A problem of the form

$$\text{maximize/minimize } c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

$$\text{subject to } a_{1,1}x_1 + \cdots + a_{1,n}x_n \leq (\text{or}) \geq b_1$$

$$a_{2,1}x_1 + \cdots + a_{2,n}x_n \leq (\text{or}) \geq b_2$$

$$\vdots$$

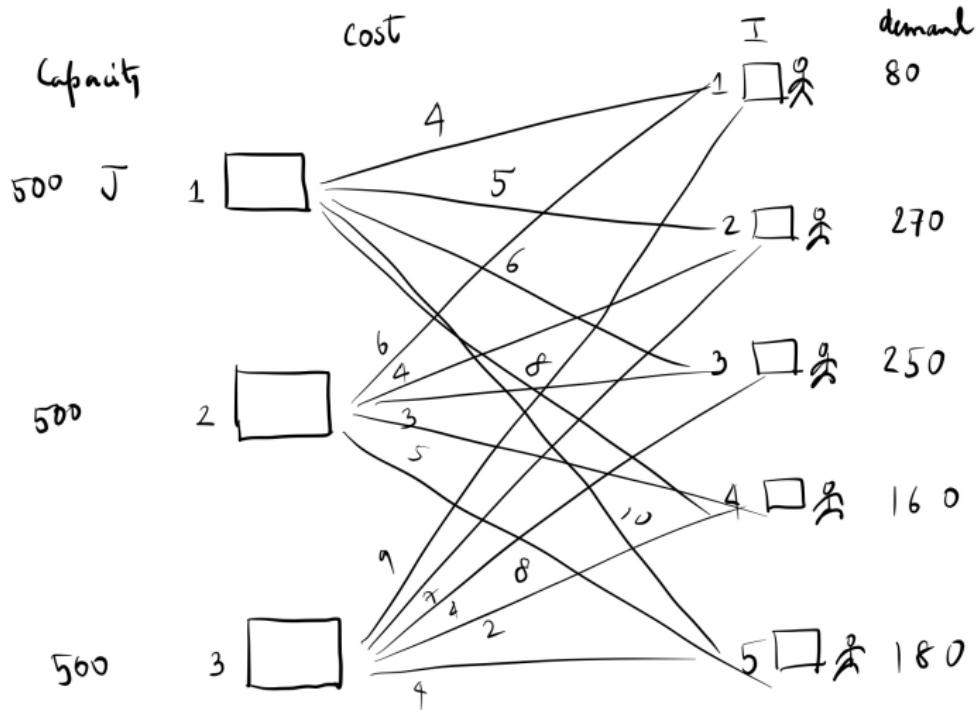
$$a_{m,1}x_1 + \cdots + a_{m,n}x_n \leq (\text{or}) \geq b_m$$

$$x_1, x_2, \dots, x_n \geq 0$$

- ▶ is called a standard linear programming problem.

Another Example: Transportation Problem

- ▶ A sports equipment company XYZ has products manufactured at three factories($j = 1, 2, 3$) and delivered to five stores($i = 1, 2, 3, 4, 5$). What to do to minimize cost.
- ▶ Lets us draw the scenario



Transportation Problem contd.

- As a table it is given by

		Customer					Capacity
		1	2	3	4	5	
Transportation cost c_{ij}	
	1	4	5	6	8	10	500
plant j	2	6	4	3	5	8	500
	3	9	7	4	2	4	500
demand d_i		80	270	250	160	180	

Problem Formulation

- ▶ Let x_{ij} be the amount of goods transported from factory j to customer i .
- ▶ Then can you write the optimization problem.

Answer:

$$\begin{aligned} & \text{minimize} && \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\ & \text{subject to demand} && \sum_{j \in J} x_{ij} = d_i \quad \forall i \in I \\ & \text{and factory capacity} && \sum_{i \in I} x_{ij} \leq M_j \quad \forall j \in J \\ & && x_{ij} \geq 0 \quad \forall i \in I, j \in J \end{aligned}$$

Solution via code

- ▶ We will use a special datatype in Python to our advantage. It is a dictionary(or arrays would work fine as well). It allows to specify the keys and the values at the keys `{key1:value1, key2:value2, ...}`
- ▶ For demand `demand = {1:80, 2:270, 3:250, 4:160, 5:180}`
- ▶ For capacity `capacity = {1:500, 2:500, 3:500}`
- ▶ List(arrays in Python are called lists) of customers `I = [1,2,3,4,5]`
- ▶ Factories `J = [1,2,3]`
- ▶ Shipping cost would be a 2D array. We use dictionaries as `cost = {(1,1):4, (1,2):6, (1,3):9, (2,1):5, (2,2):4, (2,3):7, (3,1):6, (3,2):3, (3,3):3, (4,1):8, (4,2):5, (4,3):3, (5,1):10, (5,2):8, (5,3):4, }`

The full code and solution

(Refer to the python notebook attached in Canvas>Files)

► Output

Optimal value: 3350.0

sending quantity	80.0 from factory	1 to customer
sending quantity	270.0 from factory	2 to customer
sending quantity	230.0 from factory	2 to customer
sending quantity	20.0 from factory	3 to customer
sending quantity	160.0 from factory	3 to customer
sending quantity	180.0 from factory	3 to customer

Summary

- ▶ We saw problems that are known are linear programs.
- ▶ We saw two examples.
- ▶ Some drawbacks of LPs
- ▶ The constraints and objective functions are linear. In nature we often have factors that are not linear say $5x^2 + y^2$ or $\log(5x) + 4y$
- ▶ These do not work well in LPs.
- ▶ However the advantage of LPs is that they are simple to state and solve.
- ▶ Next class we will talk more about LPs and Integer LPs.