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Markov Chains: Ergodicity

I Recall last time we discussed two kinds of states:
I Recurrent states.
I Transient states.
I In simple language a state s is recurrent if with probability 0

you do not escape s, once you start at s.
I Similarly a state s is transient if you can escape s (never

return to s) after starting from s with a non-zero probability.
I Today we will attempt to prove a few observations from last

time.
I Let us start with the notion of ergodicity.

••



Ergodicity

I Suppose P is a transition matrix for a markov chain M.
I Furthermore, let Pn = (P(n)

ij ) record the n-step transition
probabilities.

I In other words, probability of going from state i to j after
n-steps.

I Suppose Pn is special: the entries P(n)
ij are all non-zero.

I In other words, P allows movement from any state i to any
state j after n steps.

I Then M is said to be Ergodic, if there exists an n such that
Pn is special.



Example
I In simpler terms, M is ergodic if some power its transition

matrix contains no zeros.
I Note that if P itself contains no zeros (for example the weather

example from last time)

P =

Q

ca
0.4 0.4 0.2
0.2 0.5 0.3
0.3 0.4 0.3

R

db ,

then it is ergodic trivially.
I However, P may have zeros, but some power of P may still

have all non-zero entries.

I Consider P =

Q

ca
0.2 0.8 0
0 0.6 0.4

0.7 0 0.3

R

db then P has zero entries, but

I P2 =

Q

ca
0.04 0.64 0.32
0.28 0.36 0.36
0.35 0.56 0.09

R

db has non-zero entries, making P

ergodic.



Meaning of Ergodicity

I Ergodicity is helpful because it gives a number n such that
after n steps it is possible to go from any state to any other
state.

I We saw the weather example from last time was ergodic for
n = 1

I However, the random walk on {≠3, ≠2, ≠1, 0, 1, 2, 3} is not
ergodic, because,

I for any power n there are zero entries.
I For example if n is even then cannot go from 1 to 2 (because 1

is odd, and 2 is even).
I Similarly, if n is odd then cannot go from 0 to 2 (because 0

and 2 are both even and n is odd).



Why Ergodicity?

I You may ask why do I need ergodicity.
I Answer:
I Theorem: For ergodic Markov chains we have a limiting

distribution fi, and every row of the matrix Pn converges to the
limiting distribution.



Example

I Let us revisit the weather example.

I The matrix P =

Q

ca
0.4 0.4 0.2
0.2 0.5 0.3
0.3 0.4 0.3

R

db had the property that for

higher values of n
I

Pn ¥ P10 =

Q

ca
0.28395062 0.44444444 0.27160494
0.28395062 0.44444444 0.27160494
0.28395062 0.44444444 0.27160494

R

db

I In other words the limiting distribution in this case is
fi = [0.28395062, 0.44444444, 0.27160494].

I This says that in the long run a typical day has 28% chance of
being Sunny, 44% chance of being Cloudy and 27% chance of
being Rainy.



Finding Limiting Distributions
I Suppose we are provided with a ergodic markov chain with

transition matrix P =

Q

ca
0.4 0.4 0.2
0.2 0.5 0.3
0.3 0.4 0.3

R

db.

I And we must find the limit matrix

limnæŒ
Pn =

Q

cccca

fi
fi
...
fi

R

ddddb

I For example in the weather case we saw the answer is

Pn ¥ P10 =

Q

ca
0.28395062 0.44444444 0.27160494
0.28395062 0.44444444 0.27160494
0.28395062 0.44444444 0.27160494

R

db

.



contd..

I Let P = limnæŒ Pn =

Q

cccca

fi
fi
...
fi

R

ddddb
be the limit matrix.

I Then for any initial state v the final state is fi

vP = fi.

I This means
$fi = v limnæŒ

Pn = v lim
n+1æŒ

Pn+1 = v limnæŒ
PnP = vPP = fiP

I In other words, we arrive at the surprising fact! that
I fi is an eigenvector of P with eigenvalue 1.



Calculation

I Now let us solve for the eigenvector for P =

Q

ca
0.4 0.4 0.2
0.2 0.5 0.3
0.3 0.4 0.3

R

db.

I We want
fiP = fi

I In other words if fi = [fi1 · · · fik ] then

Ë
fi1 · · · fik

È
·

S

WU
0.4 0.4 0.2
0.2 0.5 0.3
0.3 0.4 0.3

T

XV =
Ë
fi1 · · · fik

È
.

I In our case
0.4fi1 + 0.2fi2 + 0.3fi3 = fi1
0.4fi1 + 0.5fi2 + 0.4fi3 = fi2
0.2fi1 + 0.3fi2 + 0.3fi3 = fi3



contd..

I
0.4fi1 + 0.2fi2 + 0.3fi3 = fi1
0.4fi1 + 0.5fi2 + 0.4fi3 = fi2
0.2fi1 + 0.3fi2 + 0.3fi3 = fi3

I After solving we get

fi1 = 23
81 ¥ 0.28395

fi2 = 36
81 ¥ 0.44444

fi3 = 22
81 ¥ 0.2716

I which agrees with our initial guess!



Python Implementation

I One can use the sympy library to perform symbolic
computations.

I We enter rational number for example 4
10 by

sympy.Rational(4,10)
I We create a matrix P by P = sympy.Matrix()
I Eigenvalues and eigenvectors can be computed by

P.eigenvals() and P.eigenvects() respectively.
I Refer to jupyter notebook “Eigenvector Calculation” for full

details.


