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Travelling Salesman Problem

> We ask the following question:

» Given a weighted graph, with non-negative weights, find a
hamiltonian cycle of least total weight.

» Analogously, we may ask:

» Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the original city?



Observation:

» Observe that the underlying graph G can be expanded to a
complete graph

> if we take the weights of the extra edges to be “infinity” or a
large enough quantity that the cycle will not select them.

> Complete graphs are easier to write a linear program for.



Integer Linear Program

» Given an edge (/,)) let ¢jj = cji we the weight of the edge.

P In case we want to consider directed graphs, then we can take
Cij 75 Cjii -

» Let x;; be a binary variable, that records

> 1 if path goes from city i to city j.

» 0 otherwise.



Almost:

P> minimize
n n
> D Gy
i=1 j#ij=1
» Given a vertex i, we go from / to another vertex (and only one)
J, therefore for each i,

n
> xj=1
LA

» Given a vertex j we must arrive at it from some vertex (and
only one), therefore for each j,

n
Z X,'J':].

i=1,i%j



Question: Is this enough?

» Answer: Not quite!

» Reason: We may select more than one cycle. Because nothing
prevents the program from that. Each smaller cycle is called a
subcycle.

» Therefore we must avoid subcycles.



Tweaking the LP

» How do we solve the problem then?

» There are many ways, we discuss the Miller Tucker Zemlin
formulation.

> Maybe we record the order in which we visit and make sure we
do not do subcycles.

> Let us pick a starting vertex say 1.

> Let us keep a record of the order of visiting by a variable u; for
each vertex i.



contd..

> 11 =1 since we start at vertex 1.

> 2<u<n

» If path goes from i to j then u; = u; + 1, to enforce this the
constraint:

> for2<i#j<n

up—uj+nx;<n-—1



Extra constraint proof

» To prove why for2 <ij#j<n
U,'—u_,'-f-nX,'jSI’l—l

> works, suppose we have a subcycle K not containing vertex 1
and size k.

» For those vertices in the subcycle x;; = 1 if the cycle goes from
i to j, therefore we add the k constraints to get

>
Z (up—uj+n) < Z n—1

(i))ek (ij)eK



Contd..

> Since K is a subcycle, 3 ; ek ui — uj = 0.
» Therefore we obtain
nk < (n—1)k

» which is impossible.
Therefore we cannot have a subcycle not containing 1.

v



Contd..

» The constraint is feasible:

» If xjj = 0, then the constraint u; — u; 4 nx;; < n—1 tells us that
| 2

U,'—Ujgn—l

which is true because 2 < u;, u; < n.
> If x; =1, then for 2 <i,j<n

u;—uj+n§n—1 = u;+1§uj

» The fact that u; can be among {2,...,n} forces uj = u; + 1.



TSP LP (MTZ Version)

> We state the LP for completeness:

» minimize
n n
> D> G
i=1 j#i j=1
» for each i,
n
> xj=1
J=1j#i
» for each j,
n
> x=1
i=1,i#j
> =1, and2<u;<nfor2<i<nand
> for2<ij<n
ui—uj+nx;<n-—1



Other formulations

» There are other formulations as well.
» Another way to avoid subcycles is to ensure that for every
proper subset Q of size 2 < |Q] < n — 1 of the vertices

» the sum
Y o <|Q-1
iJEQ,i#j
» In other words
» for every proper subset subset Q such that2 < |Q|<n—1

YD x<Q-1
i€EQjAIJER

» It is known as Dantzig Fulkerson Johnson Formulation (DFJ).
The caveat is that here we have 2" — (n + 2) subsets Q which
enforce exponential number of constraints.



Applications

» practically everywhere
» logistics, planning,
> DNA sequencing, chip design etc.



Variants

> If the weights satisfy the triangle inequality

caB < cac + cc

this is a metric TSP.

We may consider other versions

For example we may want asymmetry ¢ # cji

Or we may allow certain vertices to be visited multiple times.

vvyyvyy



