

MATH 224B

Instructor: Junaid Hasan

Multiple Integrals: Practice Problems for Exam 1

Questions:

1. In the following make a sketch of the region of integration and evaluate the double integrals:

(a) $\iint_S (1+x) \sin y \, dx \, dy$, where S is the trapezoid with vertices $(0,0), (1,0), (1,2), (0,1)$.

(b) $\iint_S e^{x+y} \, dx \, dy$, where $S = \{(x,y) \mid |x| + |y| \leq 1\}$.

Answer: a) $\frac{2}{3} + \cos 1 + \sin 1 - \cos 2 - 2 \sin 2$. and b) $e - e^{-1}$.

2. In the following make a sketch of the region S and interchange the order of integration:

(a) $\int_0^1 \left[\int_0^y f(x,y) \, dx \right] \, dy$.

(b) $\int_1^e \left[\int_0^{\log x} f(x,y) \, dy \right] \, dx$.

Answer: a) $\int_0^1 \int_0^x f(x,y) \, dy \, dx$.

3. When a double integral was set up for the volume V of the solid under the paraboloid $z = x^2 + y^2$ and above a region S of the xy -plane, the following sum of iterated integrals was obtained:

$$V = \int_0^1 \left[\int_0^y (x^2 + y^2) \, dx \right] \, dy + \int_1^2 \left[\int_0^{2-y} (x^2 + y^2) \, dx \right] \, dy.$$

Sketch the region S and express V as an iterated integral in which the order of integration is reversed.

Also carry out the integration and compute the volume V . $\frac{8}{3} = xp\int_0^2 z^3 \, dz$. **Answer:** $\frac{8}{3}$.

4. When a double integral was set up for the volume V of the solid under the surface $z = f(x,y)$ and above a region S of the xy -plane, the following sum of iterated integrals was obtained:

$$V = \int_1^2 \left[\int_x^{x^3} f(x,y) \, dy \right] \, dx + \int_2^8 \left[\int_x^8 f(x,y) \, dy \right] \, dx.$$

(a) Sketch the region S and express V as an iterated integral in which the order of integration is reversed.

(b) Carry out the integration and compute V when $f(x,y) = \frac{6x(x^2+1)^2}{y}$.

Answer: $\frac{2}{3} = \int_1^2 \int_8^{64x^3} \frac{6x(x^2+1)^2}{y} \, dy \, dx$.

5. Reverse the order of integration to derive the formula

$$\int_0^a \left[\int_0^y e^{m(a-x)} f(x) \, dx \right] \, dy = \int_0^a (a-x) e^{m(a-x)} f(x) \, dx.$$

6. Compute the following integral by changing to polar coordinates:

$$\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} dy dx.$$

Answer: $\int_{\frac{\pi}{2}}^0 \int_0^{2a \cos \theta} r \, dr \, d\theta = \frac{\pi a^2}{2}$

7. Compute the volume of the region bounded by a circular cylinder $x^2+y^2 = a^2$, the octant $x \geq 0, y \geq 0, z \geq 0$, and the plane $x + z = a$. **Answer:** $\frac{\pi a^3}{3}$

8. Find the surface area of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ above the plane $z = \frac{a}{2}$.

Answer: $\int_{2\pi}^0 \int_0^{\frac{a}{\sqrt{3-\cos\theta}}} \frac{\sqrt{a^2 - r^2}}{a} r dr d\theta$.

9. Interchange the order of integration to derive the formula

$$\int_0^x \left(\int_0^v \left[\int_0^u f(t) dt \right] du \right) dv = \frac{1}{2} \int_0^x (x-t)^2 f(t) dt.$$

10. Use a suitable linear transformation to evaluate the double integral

$$\iint_S (x-y)^2 \sin^2(x+y) \, dx \, dy,$$

where S is the parallelogram with vertices $(\pi, 0), (2\pi, \pi), (\pi, 2\pi), (0, \pi)$.

11. A solid is bounded by two concentric hemispheres of radii a and b , where $0 < a < b$. Find the center of mass if the density is constant. **Answer:** On the axis of symmetry, at a distance of $\frac{8}{3} \cdot \frac{b-a}{b+a}$.

12. The stem of a mushroom is a right circular cylinder of diameter 1 and length 2, and its cap is a hemisphere of radius R . If the mushroom is a homogenous solid with axial symmetry, and if its center of mass lies in the plane where the stem joins the cap, find R . **Answer:** $\frac{\sqrt{2}}{2}$

13. Consider the mapping defined by the equations:

$$x = u + v, \quad y = v - u^2.$$

(a) Compute the Jacobian determinant $J = \frac{\partial(x,y)}{\partial(u,v)}$.

(b) A triangle T in the uv -plane has vertices $(0,0), (2,0), (0,2)$. Describe, by means of a sketch, its image S in the xy -plane.

(c) Calculate the area S by a double integral extended over S and also by a double integral extended over T .

(d) Evaluate $\iint_S (x-y+1)^{-2} dx dy$.

14. Consider the mapping defined by the two equations $x = u^2 - v^2, y = 2uv$.

(a) Compute the Jacobian determinant $J = \frac{\partial(x,y)}{\partial(u,v)}$.

(b) Let T denote the rectangle in the uv -plane with vertices $(1, 1), (2, 1), (2, 3), (1, 3)$. Describe by means of a sketch, the image S in the xy -plane.

(c) Evaluate the double integral $\iint_C xy \, dx \, dy$ by making the change of variables $x = u^2 - v^2, y = 2uv$, where $C = \{(x, y) \mid x^2 + y^2 \leq 1\}$.

Answer: a) $4(u_2 + v_2)$ and c) 0.

15. Find the center of mass of a thin plate in the shape of a rectangle $ABCD$ if the density at any point is the product of the distances of the point from the two adjacent sides AB and AD .

Answer: $\bar{x} = \frac{3}{2}|AB|, \bar{y} = \frac{3}{2}|AD|$, if AB and AD are along the x and y axes respectively.