

Midterm 2 Practice

Integrals

Follow this idea:

- Look for simplification/substitution (like \sqrt{x} means $u = \sqrt{x}$ or $\sqrt{4-x}$ means $u = 4-x$). Do not forget dx ! For example

$$\int e^x \sin(e^x) \cos(e^x) dx$$

We solve this by $u = e^x$, then $du = e^x dx$. Therefore the integral becomes

$$\int \sin(u) \cos(u) du.$$

- Follow this guideline

Logs, Inverse Trig	BY PARTS
sin, cos, tan, sec	Trig
Quadratic under a radical	Trig Sub
Rational Function	Partial Fractions

Example

- For $\sqrt{x^2 - a^2}$ substitute $x = a \sec \theta$.
- For $\sqrt{a^2 - x^2}$ substitute $x = a \sin \theta$
- For $\sqrt{a^2 + x^2}$ substitute $x = a \tan \theta$.

Note the above work even when power is 3/2 or 5/2 for example in terms like $(x^2 + a^2)^{\frac{3}{2}}$.

- Partial Fraction example:

$$\int \frac{x dx}{x(x+2)^2(x^2+1)^2} = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{(x+2)^2} + \frac{Dx+E}{(x^2+1)} + \frac{Fx+G}{(x^2+1)^2}$$

Question: Evaluate the following:

1. $\int \frac{x^2+7}{x^2(3-x)} dx$
2. $\int \sqrt{x} \ln(x) dx$
3. $\int \frac{1}{(x^2+6x+13)^{3/2}} dx$
4. $\int \tan^{-1} x dx$
5. $\int \sin^2(x) \cos^3(x) dx$

$$6. \int \frac{1}{x^2\sqrt{25-x^2}} dx$$

$$7. \int \frac{\sqrt{x}}{x-9} dx$$

$$8. \int \tan^4 x \sec^4 x dx$$

$$9. \int x\sqrt{4-x} dx$$

$$10. \int \tan^3 x \sec x dx$$

$$11. \int x^2 \ln(x) dx$$

$$12. \int x\sqrt{5-x} dx$$

$$13. \int \frac{\sqrt{x^2-1}}{x^2} dx$$

$$14. \int \frac{x^2+1}{x^2-2x-3} dx$$

$$15. \int x \tan^{-1}(x) dx$$

$$16. \int \frac{1}{\sqrt{4x^2+8x-12}} dx$$

Work

A well is shaped of a cylinder of radius 1 m and depth 8 m and is *half full*. Find the work done to pump all the water out. (Density of water 1000 kg/m³ and $g = 9.8$ m/sec²).

Arc length

Often in the problem you would need to approximate the integral using **Trapezoid Rule or Simpsons Rule**. Here is an example problem that is simpler to compute and does not require approximation.

(The formula for arc length of $f(x)$ between a and b is $\int_a^b \sqrt{1 + (f'(x))^2} dx$.

1. Find the arc-length of the function $\ln(\cos(x))$ from $x = 0$ to $x = \frac{\pi}{3}$.

Answer: $\ln(2 + \sqrt{3}) \approx 1.317$.

All the best for the midterm!