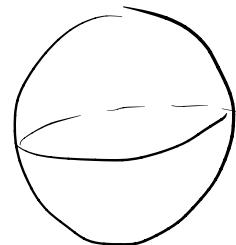


Lecture -21 - Surface integrals of vector fields

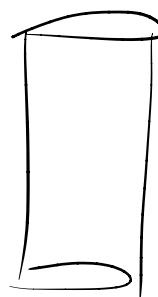
Recap the notion of orientability. An orientable surface is one that has a well defined outside vs inside or outward vs downward.

Example of orientable surfaces

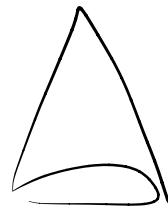
Most nice surfaces: Sphere



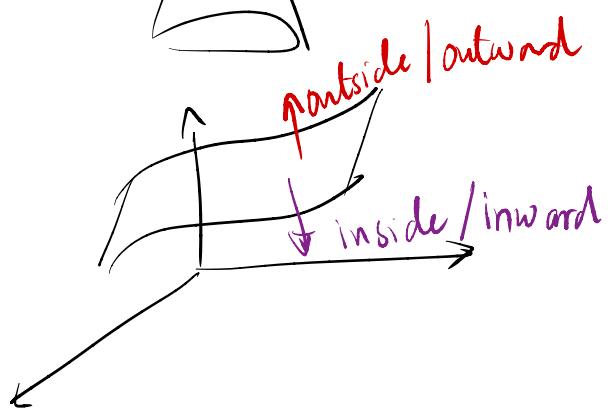
Cylinder



Cone

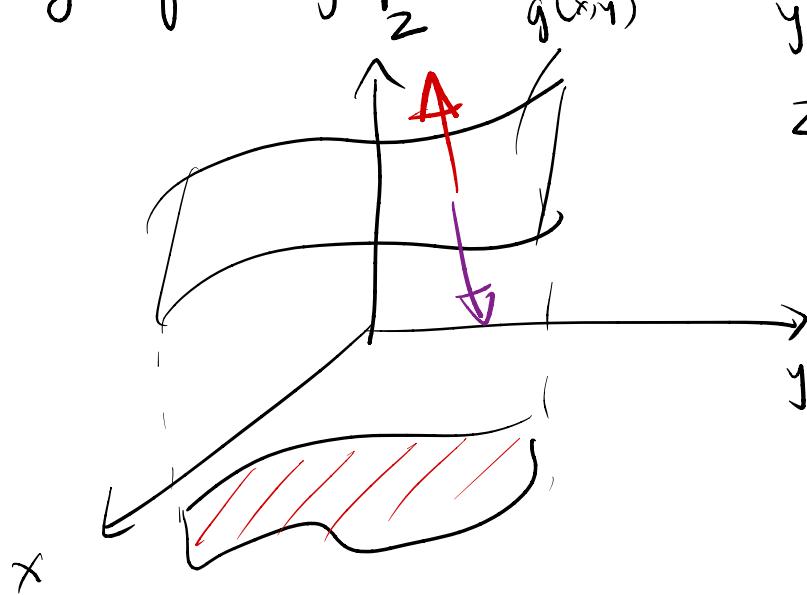


Graph of a function



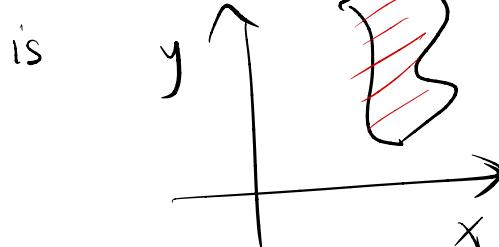
The normal vector (may be outside or inside depending on parameterization) is a crucial tool in detecting orientation.

Eg for a graph



$$\begin{aligned} x &= x \\ y &= y \\ z &= g(x, y) \end{aligned}$$

here the parameter space



is

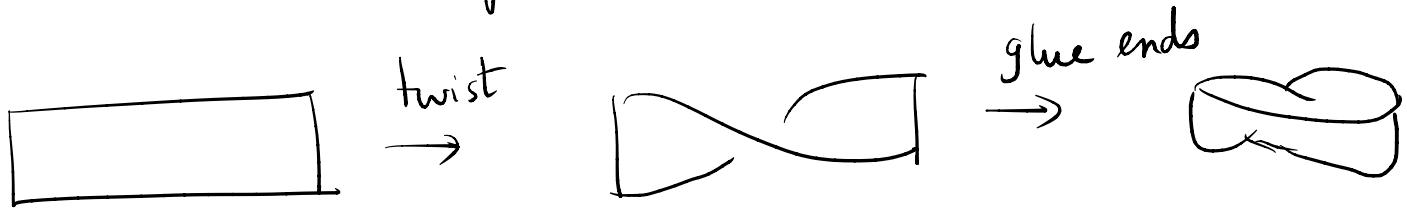
and a normal vector is

$$\begin{aligned} \vec{r}_x \times \vec{r}_y &= \langle 1, 0, g_x \rangle \times \langle 0, 1, g_y \rangle \\ &= \langle -g_x, -g_y, 1 \rangle \end{aligned}$$

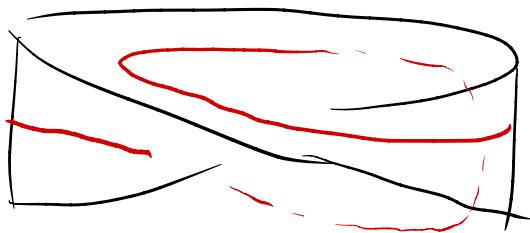
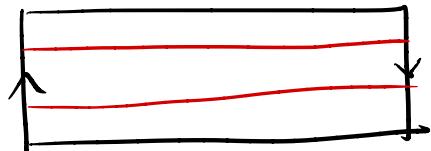
The z coordinate of 1 indicates outward

$$\therefore \vec{r}_y \times \vec{r}_x = \langle g_x, g_y, -1 \rangle \text{ will be inward}$$

A non-orientable surface is a Möbius strip



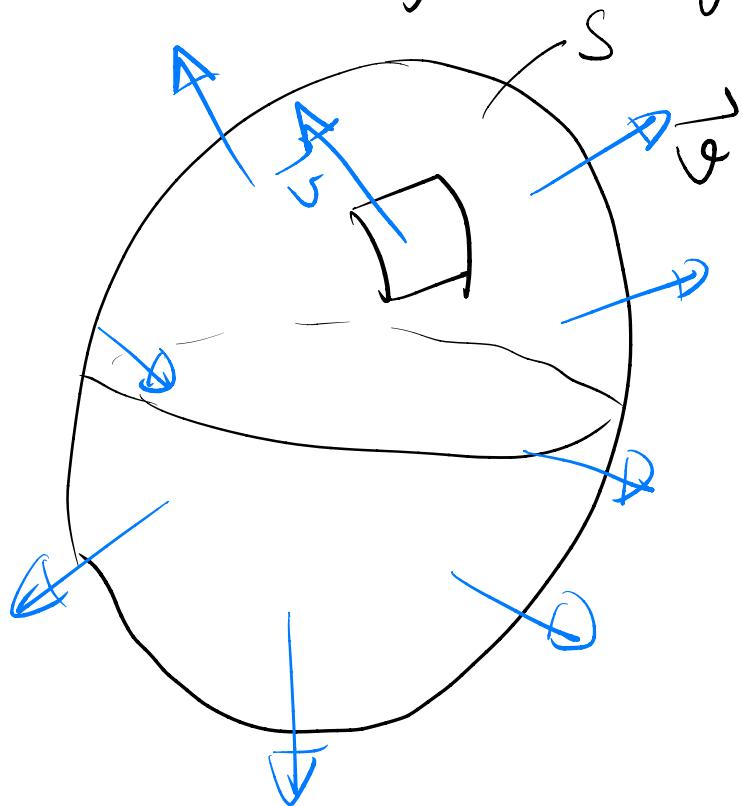
This surface has no well defined outside vs inside because on travelling on this surface one can start at an outside and then suddenly be inside due to the twist.



We will be working over nice ie, orientable surfaces and this anomaly will not arise.

Flux ie, Surface integral of vector field

Suppose we have a vector field \vec{v} that models fluid velocity and say we pick a surface S and want to study amount of water escaping the surface



If the density (mass per unit volume) of the fluid is $\rho(x, y, z)$, then in unit time mass of fluid escaping

perpendicular to the area is

$$\Delta m = p(x, y, z) (\vec{v} \cdot \hat{n}) \Delta S$$

The dot product is needed because we want to measure the amount of fluid moving out (ie, perpendicular) to ΔS .

In the limit

$$m = \iint_S p(x, y, z) \vec{v} \cdot \hat{n} dS$$

$\underbrace{\quad}_{F}$ $\underbrace{dS}_{\Delta S}$

Therefore we arrive at the following definition

If \vec{F} is a vector field defined on an oriented surface S with unit normal \hat{n}

then the surface integral of \vec{F} over S (flux of \vec{F} across S) is given by

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_S \vec{F} \cdot \hat{n} dS$$

In most cases we can compute $\hat{n} dS$ via

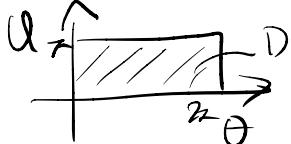
$$\vec{\gamma}_u \times \vec{\gamma}_v = \hat{n} dS \quad \text{or}$$

$$\vec{\gamma}_v \times \vec{\gamma}_u = \hat{n} dS \quad \text{depending on the orientation outside or inside}$$

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_D \vec{F} \cdot (\vec{r}_u \times \vec{r}_v) dA$$

Find Flux of vector field $\vec{F}(x, y, z) = \hat{i} + y\hat{j} + x\hat{k}$
 across $x^2 + y^2 + z^2 = 1$

- Parametrically $\vec{r}(\theta, \varphi) = \langle \sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi \rangle$



$$<= 0 \leq \varphi \leq \pi, 0 \leq \theta \leq 2\pi$$

- $\vec{F}(\vec{r}(\theta, \varphi)) = \cos \varphi \hat{i} + \sin \varphi \sin \theta \hat{j} + \sin \varphi \cos \theta \hat{k}$

- $\vec{r}_\varphi \times \vec{r}_\theta = \langle \sin^2 \varphi \cos \theta, \sin^2 \varphi \sin \theta, \sin \varphi \cos \varphi \rangle$

(Note that $\vec{r}_\theta \times \vec{r}_\varphi$ would have all components with negative sign and would point inward)

$$\vec{F}(\vec{r}(\theta, \varphi)) \cdot (\vec{r}_\varphi \times \vec{r}_\theta)$$

$$= \cos \varphi \sin^2 \varphi \cos \theta + \sin \varphi \sin \theta \sin^2 \varphi \sin \theta \\ + \sin^2 \varphi \cos \theta \cos \varphi$$

$$= 2 \sin^2 \varphi \cos \theta \cos \varphi + \sin^3 \varphi \sin^2 \theta$$

Therefore

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_D \vec{F} \cdot (\vec{r}_\varphi \times \vec{r}_\theta) dA$$

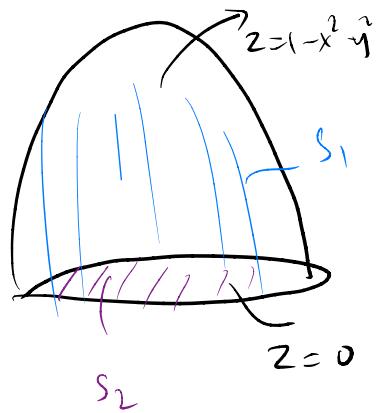
$$= \int_0^{2\pi} \int_0^\pi (2 \sin^2 \varphi \cos \varphi \cos \theta + \sin^3 \varphi \sin^2 \theta) d\varphi d\theta$$

$$= \int_0^{2\pi} 2 \cos \theta \int 2 \sin^2 \varphi \cos \varphi d\varphi d\theta + \int_0^{2\pi} \sin^2 \theta \int \sin^3 \varphi d\varphi d\theta$$

$$= 0 + \pi \cdot \frac{4}{3}$$

Often times we may have to split the surface into cases.

Evaluate $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F}(x, y, z) = \hat{y} + \hat{x} + \hat{z}$
 and S is the boundary of the solid enclosed by paraboloid $z = 1 - x^2 - y^2$ and plane $z = 0$

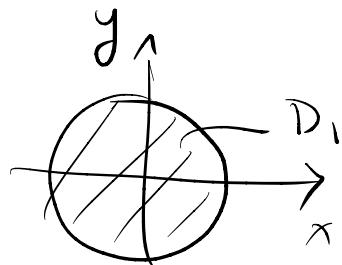


The flux will be

$$\iint_{S_1} \vec{F} \cdot d\vec{S} + \iint_{S_2} \vec{F} \cdot d\vec{S}$$

For S_1 $\vec{r}(x, y) = \langle x, y, 1 - x^2 - y^2 \rangle$

Parameter space



$$\vec{r}_x = \langle 1, 0, -2x \rangle, \quad \vec{r}_y = \langle 0, 1, -2y \rangle$$

$$\vec{r}_x \times \vec{r}_y = \langle 2x, 2y, 1 \rangle$$

$$\vec{F}(\vec{r}(x,y)) = \langle y, x, 1-x^2-y^2 \rangle$$

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_{D_1} \vec{F}(\vec{r}(x,y)) \cdot (\vec{r}_x \times \vec{r}_y) dA$$

$$S_1 \quad D_1$$

$$= \iint (2xy + 2xy + 1-x^2-y^2) dA$$

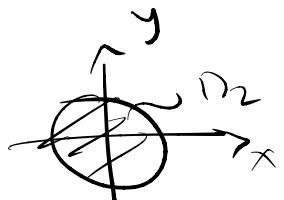
$$= \iint_{D_1} (1+4xy-x^2-y^2) dy dx$$

$$= \int_{\theta=0}^{2\pi} \int_{r=0}^1 (1+4r^2 \cos \theta \sin \theta - r^2) r dr d\theta$$

$$= \int_0^{2\pi} (r - r^3) + 4r^2 \sin \theta \cos \theta dr d\theta = \frac{1}{4} \int_0^{2\pi} d\theta = \frac{2\pi}{4} = \frac{\pi}{2}$$

For S_2

$$\vec{r}(x, y) = \langle x, y, 0 \rangle$$



$$\vec{r}_x = \langle 1, 0, 0 \rangle$$

$$\vec{r}_x \times \vec{r}_y = \langle 0, 0, 1 \rangle$$

$$\vec{r}_y = \langle 0, 1, 0 \rangle$$

Outward will be

$$\vec{r}_y \times \vec{r}_x = \langle 0, 0, -1 \rangle$$

$$\iint \vec{F}(\vec{r}(x, y)) \cdot \vec{r}_x \times \vec{r}_y \, dA$$

D_2

$$= \iint \langle y, x, 0 \rangle \cdot \langle 0, 0, -1 \rangle \, dA$$

D_2

$$= \iint 0 \, dA = 0$$

D_2

$$\therefore \text{Total flux} = \iint_{S_1} \vec{F} \cdot d\vec{s} + \iint_{S_2} \vec{F} \cdot d\vec{s} = \frac{\pi}{2} + 0 = \frac{\pi}{2}$$

