
Lecture -21 - Surface integrals of vector fields

Recap the notion of orientability . An orientable surface
is one that has a well defined outsiders inside

or outward vs downward .
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The normal vector (may be
outside or inside

depending on parameterization) is a crucial tool

in detecting orientation .
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and a normal vector is

E. ✗Ty = { " " 8×7×491%7
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The 2 coordinate of 1 indicates outward

i. Try ✗of = ↳ × , gy , -17 will be inward



A non - orientable surface is a Mobius strip
glue ends

⇒ ¥" # → ⇔u

This surface has no well defined outsiders inside

because on travelling on this surface on can start

at an outside and then suddenly be inside due to

the twist . F€

t⇔
We will be working over nice ie

,
orientable

surfaces and this anomaly will not arise .



Flix ie
, surface integral of vector field

Suppose we have a vector field that

models fluid velocity . and say we pick
a surface S and want to study amount

of water escaping the surface
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If the density (mass for unit volume )

of the fluid is ftp.z) , then in unit

time man of fluid escaping



perpendicular to the area is

Dm = flxiyz)@ • Ñ ) ☐ s

The dot product is needed because we

want to measure the amount of fluid
moving out ( ie, perpendicular ) to DS .

In the limit

m = ffcx,y,z)Ñ • Ids
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Therefore we arrive at the following definition



If F- is a vector field defined on

an oriented surface S with unit normal ñ

then the surface integral of
¥ overs

( flux of É across s) is given by

JSE . D8 = §# • ñds

S

In most cases we can compute ÑDS rice

ÑuxJ
,
= Ids or

,

To ✗The = Ids defending on
the orientation outside

or inside .



i. f§ÉdJ = ffÉEu×ñdA
D

Find Flux of vector field # (x,y,z) =zT+yj+xÑ
Across x2+y2 -122=1

• Parametrically r( 0,4)=§inY woo
,
snip snit , ant

¥É¥ <= 0 ≤ y≤ a-
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◦≤ ⊖ ≤ 2s

• F- (810-147) = Cosy ↑ + sinysnioj-sinyae.tk

◦ Ty ✗To = (since cost , siiysnio , sing cosy>

( Note that Tf ✗Ty would have all components with

negative sign and would point inward )



i. FEW .es ) • * ✗%-)
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+ sinhlcosocosy

= 2siiycoso-cosy-s.my Sino
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Oftentimes we may have
to split the surface

into cases .

-

Evaluate F.D8 where Écx,yps=yi+×j+zÑ

and S is the boundary of the

solid enclosed by paraboloid 2=1×2-5 and

plane 2=0
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The flux will bel" HE .dJ + HE .dJ
2=0
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F. D8 = f) Etihad . Try )dA
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= ± Endo = 35--32
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Outward will be

ry×ox= 40,9-1>
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i. Total flux = §ÉdJ + E- di = 7+0=2




