

Computing divergence, curl

$$\vec{F}(x, y, z) = e^x \hat{i} + yz \hat{j} - y^2 \hat{k}$$

find divergence of \vec{F} at $(0, 2, -1)$

$$\text{Ans} = e^0 - 1 + 4 = 4$$

Finding if a field is magnetic (source free)

$\vec{F}(x, y) = \langle x^2 y, y - xy^2 \rangle$. Can it be magnetic?

Ans: $\text{div } \vec{F} = 0 \Leftarrow$ for source free magnetic fields

$\text{div } \vec{F} = 0 \Rightarrow$ source free for
simply connected domain.

Is $\vec{F}(x, y) = \langle x^2 y, 5 - xy^2 \rangle$ source free?

Ans: Yes.

~~Q~~ $\vec{F}(x, y) = \langle -ay, bx \rangle$ be a rotational field. Is it source free?

divergence and fluid flow

Suppose $\vec{v}(x, y) = \langle -xy, y \rangle$, $y > 0$

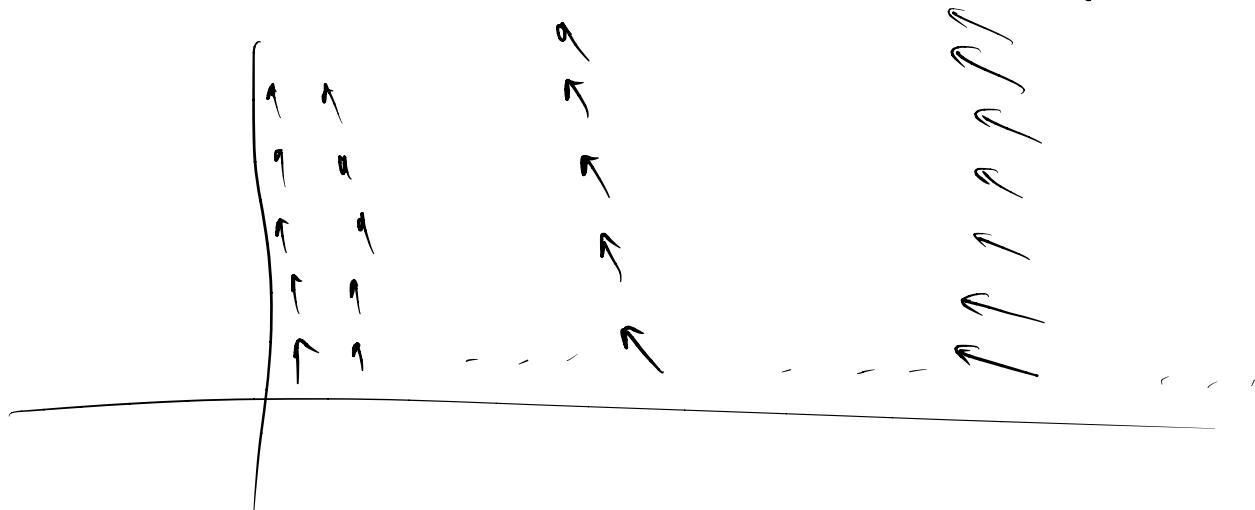
models fluid flow

Is more fluid flowing into $(1, 4)$ than flowing out?

Ans: $\operatorname{div}(\vec{v}) = -y + 1$

at $(1, 4)$ $\operatorname{div}(\vec{v}) = -3$. \therefore more

fluid is flowing in



Find all points \vec{P} on $v \langle x, y \rangle = \langle -xy, y \rangle$
 such that the amount of fluid flowing
 in to P equals the amount flowing out of P .

Curl

Measures extent of rotation of the field
 about a point.

Divergence of the curl

$$\operatorname{div} \operatorname{curl}(\vec{F}) = \vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) = 0$$

$$\begin{aligned} \operatorname{div} [(R_y - Q_z) \hat{i} + (P_z - R_x) \hat{j} + (Q_x - P_y) \hat{k}] \\ = R_{yx} - Q_{xz} + P_{yz} - R_{yx} + Q_{zx} - P_{xy} \\ = 0 \end{aligned}$$

Showing a vector field is not curl of another?

Show that $\vec{F}(x,y,z) = e^x \hat{i} + yz \hat{j} + xz^2 \hat{k}$

is not the curl of another vector field.

i.e) there is not any \vec{G} such that $\vec{\nabla} \times \vec{G} = \vec{F}$

Ans:

If it were true then

$$\begin{aligned} \operatorname{div}(\operatorname{curl} \vec{G}) &= \vec{\nabla} \cdot (\vec{\nabla} \times \vec{G}) \\ &= 0 \end{aligned}$$

$$\Rightarrow \vec{\nabla} \cdot (\vec{F}) = 0$$

$$\begin{aligned} \text{But } \vec{\nabla} \cdot \vec{F} &= e^x + z + 2xz \\ &\neq 0, \end{aligned}$$

Thm Curl of a conservative vector

field $\vec{\nabla} \times (\vec{F}) = 0$

for $\vec{F} = \vec{\nabla} f$

$$\text{curl } \vec{F} = (R_y - Q_z) \hat{i} + (P_z - R_x) \hat{j} + (Q_x - P_y) \hat{k}$$

But for conservative vector fields

$$R_y = Q_z, \quad P_z = R_x, \quad Q_x = P_y.$$

We saw that

$$\text{Conservative} \Rightarrow \text{curl } \vec{F} = 0$$

But suppose $\text{curl } \vec{F} = 0$

then is it true that \vec{F} is conservative?

Ans: Yes If domain is simply connected

Determine if $\vec{F}(x, y, z) = \langle yz, xz, xy \rangle$
is conservative.

Ans: The domain \vec{F} is all of \mathbb{R}^3
which is simply connected.

\therefore We can test \vec{F} is conservative by
computing the curl.